Uticaj veštačke inteligencije na savremene prakse regrutacije i selekcije
DOI:
https://doi.org/10.46793/Rev25112.091PKljučne reči:
Algoritamska pristrasnost, skeniranje biografije, regrutovanje, selekcija, donosenje zakljucaka na osnovu podataka, prijava za posaoApstrakt
Brzo rastuće tržište veštačke inteligencije (VI) značajno je transformisalo različite oblasti poslovanja i načine na koje obavljaju svoje svakodnevne poslove, uključujući ljudske resurse. Jedan od najvažnijih segmenata ljudskih resursa (LJR), regrutovanje i selekcija, najviše je pod uticajem VI u savremenom korporativnom svetu, gde se VI koristi za povećanje efikasnosti i objektivnosti. Ovaj rad ispituje uticaj VI na moderne prakse i procedure zapošljavanja, fokusirajući se na njene prednosti, prepreke i etičke implikacije. Analizirajući trenutne prakse zapošljavanja i implementacije VI u oblasti HR-a, rad ispituje kako alati zasnovani na VI – kao što su pregled biografija, prediktivna analiza i softver za donošenje odluka zasnovan na podacima – doprinose bržem i efikasnijem donošenju odluka u oblasti regrutovanja i zapošljavanja. Pored toga, rad se bavi i problemima koji dolaze sa tehnologijama veštačke inteligencije, kao što su pristrasnost algoritama, nedostatak transparentnosti i etička pitanja, kao i odsustvo ljudskog elementa u celom ovom procesu. Istraživanje pokazuje da, iako VI ima potencijal da revolucionizuje regrutovanje, njena efikasnost zavisi isključivo od odgovorne implementacije, kontinuiranog ljudskog nadzora i poštovanja etičkih standarda.
Reference
Ajunwa, I. (2023). The quantified worker: Law and technology in the modern workplace. Cambridge University Press.
Bogen, M., & Rieke, A. (2018). An examination of hiring algorithms: Equity and bias. Upturn. https://www.upturn.org/reports/2018/hiring-algorithms/
Cappelli, P., Tambe, P ., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
European Union. (2024). Regulation (EU) 2024/1689 (Artificial Intelligence Act). Official Journal of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ%3AL_202401689
Glazko, K., Mohammed, Y., Kosa, B., Potluri, V., & Mankoff, J. (2024). Identifying and improving disability bias in GPT‑based résumé screening. In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’24) (pp. 687–700). https://doi.org/10.1145/3630106.3658933
Hickman, L., Bosch, N., Ng, V., Saef, R., Tay, L., & Woo, S. E. (2021). Automated video interview personality assessments: Reliability, validity, and generalizability investigations. PsyArXiv. https://doi.org/10.31234/osf.io/a62jv
Illinois General Assembly. (2019). Artificial Intelligence Video Interview Act (820 ILCS 42/). https://www.
ilga.gov/Legislation/ILCS/Articles?ActID=4015&ChapterID=68
Jabeen, N., Khalil, M., Khalid, S., & Ifftikhar, A. (2025). The impact of COVID-19 on recruitment and selec-
tion: A digital and network-oriented approach. Reviews of Management Sciences, 7(1), 74–91. https://doi.
org/10.53909/rms.07.01.0282
Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines.Nat Mach Intell1, 389–399 (2019). https://doi.org/10.1038/s42256-019-0088-2
Kazim, E., Koshiyama, A., Hilliard, A., & Polle, R. (2021). Systematizing audit in algorithmic recruitment.
Journal of Intelligence, 9(3), 46. https://doi.org/10.3390/jintelligence9030046
Knežević, S., & Milojević, S. (2024). Challenges and opportunities in the application of artificial intelligence in financial management and fraud detection. In MEFkon 2024: Innovation as an initiator of the development (pp. 23–29). Faculty of Applied Management, Economics and Finance, Belgrade.
Köchling, A., & Wehner, M. C. (2020). Discriminated by an algorithm: A systematic review of discrimination and fairness by algorithmic decision‑making in the context of HR recruitment and HR development. Business Research, 13(3), 795–848. https://doi.org/10.1007/s40685‑020‑00134‑w
Koteczki, R., Csikor, D., & Balassa, B. E. (2025). The role of generative AI in improving the sustainability and efficiency of HR recruitment process. Discover Sustainability, 6, 601. https://doi.org/10.1007/s43621‑025‑01484‑3
Liff, J., Mondragon, N., Gardner, C., Hartwell, C. J., & Bradshaw, A. (2024). Psychometric properties of automated video interview competency assessments.Journal of Applied Psychology, 109(6), 921–948. https://doi.org/10.1037/apl0001173
Maurer, R. (2021, February 3). HireVue discontinues facial‑analysis screening. SHRM. https://www.shrm.org/topicstools/news/talent-acquisition/hirevue-discontinues-facial-analysis-screening
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3457607
Mirčetić, V., & Vukotić, S. (2020). The analysis of situational leadership models: Origin, divergence and development. In MEFkon 2020: Innovation as an initiator of the development – Innovations in the function of development (No. 93, pp. 93– 113). Faculty of Applied Management, Economics and Finance, Belgrade.
NIST. (2023). Artificial Intelligence Risk Management Framework (AI RMF 1.0). National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100‑1.pdf
NYC Department of Consumer and Worker Protection (2023). Automated employment decision tools: Frequently asked questions. https://www.nyc.gov/assets/dca/downloads/pdf/about/DCWP-AEDT-FAQ.pdf
OECD. (2023). OECD employment outlook 2023: Artificial intelligence and the labour market. OECD Publishing. https://doi.org/10.1787/08885bba-en
Pessach, D., Singer, G., Avrahami, D., Ben‑Gal, H. C., Shmueli, E., & Ben‑Gal, I. (2020). Employee recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, 113290. https://doi.org/10.1016/j.dss.2020.113290
Petrušić, I., Ostojić, B., & Cvjetković, M. (2024). Uloga veštačke i značaj veštačke inteligencije u marketingu. In MEFkon 2024: Innovation as an initiator of the development (pp. 23–29). Faculty of Applied Management, Economics and Finance, Belgrade.
Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 469–481). ACM. https://doi.org/10.1145/3351095.3372828
Sackett, P. R., Zhang, C., Berry, C. M., & Lievens, F. (2021). Revisiting meta‑analytic estimates of validity in personnel selection: Addressing systematic overcorrection for restriction of range. Journal of Applied Psychology, 106(10), 1547–1568. https://doi.org/10.1037/apl0000994
Schmidt, F. L., Oh, I.-S., & Shaffer, J. A. (2016). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 100 years of research findings. Journal of Applied Psychology, 102(3), 430–457.
SHRM. (2021). HireVue discontinues facial‑analysis screening. Society for Human Resource Management. https://www.shrm.org/topics-tools/news/talent-acquisition/hirevue-discontinues-facial-analysis-screening
Starke, C., Baleis, J., & Lünich, M. (2022). Fairness perceptions of algorithmic decision‑making: A systematic review of the empirical literature. Big Data & Society, 9(2), 1–14. https://doi.org/10.1177/20539517221115189
Thakur, A., Hinge, P., & Adhegaonkar, V. (2023). Use of artificial intelligence (AI) in recruitment and selection. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4452924
U.S. Department of Justice & U.S. Equal Employment Opportunity Commission. (2022). Algorithms, artificial intelligence, and disability discrimination in hiring. https://www.ada.gov/assets/pdfs/ai-guidance.pdf
Wired. (2021). Job screening service halts facial analysis of applicants. Wired. https://www.wired.com/story/job-screening-service-halts-facial-analysis-applicants/ (28.8.2025.)
Abhishek, K. L., Niranjanamurthy, M., Aric, S., Ansarullah, S. I., Sinha, A., Tejani, G., & Shah, M. A. (2025). Developing an intelligent resume screening tool with AI-driven analysis and recommendation features. Applied AI Letters, 6, e116. https://doi.org/10.1002/ail2.116